Effects of band structure and quantum interference on the differential conductance of infinite metallic single-wall carbon nanotube

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys.: Condens. Matter 19469001
(http://iopscience.iop.org/0953-8984/19/46/469001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 29/05/2010 at 06:42

Please note that terms and conditions apply.

Corrigendum

Effects of band structure and quantum interference on the differential conductance of infinite metallic single-wall carbon nanotubes
M Bagheri and A Namiranian 2007 J. Phys.: Condens. Matter 19096207
Published 02 November 2007
Online at stacks.iop.org/JPhysCM/19/469001

Recently we found that there was a missing factor, $\hbar v_{F} / 2$, in the denominator of the amplitudes in equations (30) and (32). The correct equations are, respectively,

$$
\begin{aligned}
& \mathfrak{\Re}\left[\frac{G_{\mathrm{imp}}^{\alpha \alpha, a r m}}{G_{0}}\left(V_{\mathrm{sd}}, \mathcal{E}_{\mathcal{F}}\right)\right. \\
& G_{0}= \\
&\left(\frac{\pi g^{2} T^{\mathrm{arm}}}{\hbar v_{\mathrm{F}} \mathcal{M} \mathcal{N}_{\mathrm{arm}}^{2}}\right) \cos \left[2 k_{\mathrm{F}}\left(l_{2}-l_{1}\right) T^{\mathrm{arm}}\right] \\
& \times \cos \left[\left(\frac{e V_{\mathrm{sd}}}{\hbar v_{\mathrm{F}}}\right)\left(l_{2}-l_{1}\right) T^{\mathrm{arm}}\right],
\end{aligned}
$$

and

$$
\mathfrak{R}\left[\frac{G_{\mathrm{imp}}^{\alpha \alpha, \mathrm{zig}}\left(V_{\mathrm{sd}}, \mathcal{E}_{\mathcal{F}}\right)}{G_{0}}\right]=\left(\frac{\pi g^{2} T^{\mathrm{zig}}}{\hbar v_{\mathrm{F}} \mathcal{M} \mathcal{N}_{\mathrm{zig}}^{2}}\right) \cos \left[\left(\frac{e V_{\mathrm{sd}}}{\hbar v_{\mathrm{F}}}\right)\left(l_{2}-l_{1}\right) T^{\mathrm{zig}}\right] .
$$

This factor just rescales the absolute value of the amplitudes by $2 / \hbar v_{\mathrm{F}} \approx 0.1634$, and it does not affect anything else. Also, some misprinted errors have been detected:
(1) $g=10^{3} \gamma_{0}$, on page 11 after equation 33 , should be replaced by $g=10^{4} \gamma_{0}$;
(2) All 'bohr' should be replaced by 'Bohr';
(3) $\tilde{g}^{ \pm}$in equation (23) should be replaced by $\mathbf{g}^{ \pm}$.

These errors do not affect the conclusions of the paper. We apologize for these mistakes and any possible inconvenience they have caused.

